
Animation

In order to make your experience come to life we need to add some motion. We will do this by
adding animations! Unity allows us to animate in a couple different ways.

Animation Through Scripting:

Guess what? You already know how to do this! In the previous assignment, you learned how to
control the position, rotation, and scale of an object through scripts to open the door. However if
you are not privy to the idea of doing vector math, there is a much simpler, more visually
intuitive way to do it.

Unity’s Animation System

In Unity, every object is a animatable, so long as it has an Animator Controller component on
it. The Animator Controller interacts with an Animator which keeps track of the various
individual animations or Animation Clips associated with a particular object. Each animatable
object can have many clips and they may interact with each other using

Using the Animation Window:

You can access the Animation window by using Window -> Animation -> Animation. It should
look something like this:

We want to animate the door, but right now there is no animator component on it. You can
create one by selecting the door and clicking Create in the Animation Window. This will also
prompt you to choose a name for your animation clip, which in our case you should name it
open.anim. Alternatively you can create one by selecting the door, going to the inspector and
hitting Add Component and search for Animator Controller. Then you can go in the Project
-> Create -> Animator and give it a descriptive name. Then you must drag the Animator into
the slot on the Animator Controller.

In Unity, we can use the Animation Editor to key properties of any component on a
GameObject. In order to move an object, we can key the position values of the object, just like
you might key them in an animation program like Maya or Blender.

We can add properties that we want to key by hitting the Add Property button. This will bring up
a list of our keyable components. To open a door, it rotates on its hinges, therefore we will
chose Transform -> Rotation. You will notice that we can individually key the x, y and z
rotation. Because Unity uses a Y up coordinate system, we will key the Y rotation.

We can turn on automatic keyframing by hitting the little red Record icon above the timeline.
This will automatically create a keyframe for the door in its neutral position. To set the next
keyframe, lets drag the time slider to the end of our clip. Once we are there, we can adjust the
rotation value for the door, by either manipulating it with the rotation tool b or by setting the
value in the inspector. Let’s set it to around 90 degrees. Once you set it, turn off automatic
keyframing. You can now see your animation by hitting play.

Yay! Our door opens, but you might notice that it snaps back as soon as the animation clip
ends. We can fix this. Go into your project tab and find the open animation clip. If you select it
and look in the inspector, you will see that the Loop Time checkbox is selected. This will
continuously loop the animation, which we don’t want, so we can deselect it. Now if you play
again, it will stay open.

Congrats! You have just animated your first object in Unity! Unity allows you to do a lot more
with animations as well. If you want to get

Character Animation

Our game would be kind of boring without characters, so were going to show you how to add
them. First we’ll go to the Supercyan Character Pack Free Sample -> Prefabs -> buddy.
Select and drag that into your scene. Now we need to add an Animator Controller component
by going to the inspector and clicking Add component and searching Animator. You should
see something like this.

The Avatar and Animator variables are currently set to none. Avatars are definitions for how
animations affect the transforms of a model. Let’s assign it an avatar. Because we have
animations, one is pre defined for us so we can select that by pressing the circle icon next to the
Avatar box and selecting the common_people@mposeAvatar. Next let’s create an animator
in your project tab by hitting Create -> Animator Controller, and name it something like main
character. To edit this we need to open the Animator Editor by going to Window ->
Animation -> Animator. When it opens you should see something like this. This window allows
you to build a State Machine to control all of your animations.

A State Machine is a graph of different states that are connected to each other by conditions.
In our case a state is a particular animation or blend tree in the graph, and our edges are
boolean conditions that test the parameters that we define in our state machine. We are going
to use the parameters with our movement script from the previous assignment to make the
character walk around.

You can create a state by dragging an animation clip into the graph. Let’s start by dragging our
idle animation into the window. You will notice that it turns orange. This is because Unity
automatically sets this to be our default state. This is what we want, because idle means our
character is not doing anything, and we don’t want the character to do anything unless we tell it
to. If you ever want to change the default state, we can do this by right-clicking on the node
and selecting Set as default state.

Next we will add the walk animation to the graph. Because we want our player to actually walk
while they’re moving forward, we need to add a parameter. Go to the Parameter tab on the
Animator Window and set Add Float and name it velocity. We can now use this parameter to
make transition logic. Back in the graph, right click the idle node and choose Make Transition.
This will make a little arrow, which you should drag to and click on the walk animation.

If you select the arrow, this should bring up a menu in the inspector. Uncheck the box marked
Has exit time. Look for the Conditions list and add a new condition by hitting the + button.
Because velocity is our only parameter it will have already setup the transition for you. It should
look something like this.

What this is saying is that we will transition from the idle to the walk animation when velocity is
greater than 0. We will need to change the value of 0 to 0.1. This is to account for floating point
math errors. In order to make this actually update, we need to set the parameter in our script. If
you open up your PlayerController Script from the last assignment, we will be making a few
simple changes. First we need to add a reference to our Animator component like below.

Next we will just add one line at the end of our update method. We use the setFloat method
from our animator and we are giving it the name of the parameter and our z velocity. It is
important to spell the parameter name exactly as you have written it in the editor, otherwise it
will not work.

Now you should add the PlayerController script to your character, and assign the rigidbody
and animator components in the inspector. You can do this by dragging your buddy into both of
the slots, and the inspector will find the right component on them. Now if you play and move
forward, your buddy should start walking. However you may notice that he keeps walking and
doesn’t stop. This is because we don’t have a way to get out of the walk state once we get
there. To do this we can add another transition from walk to idle. For this set the condition to be
velocity less 0.1, and make sure to again turn off Has exit time. Now you should be ready to
go!

Congrats!! Your character has come to life! Some of his movements are still a little awkward. As
a Bonus Challenge use the backwards-walk animation and try to get your character to walk
backwards as well as forwards.

If you want to look at a more complex version, you can check out the prefab pack that is
included with the character.

